Equilibrium and experimental design

A chemist is tasked with investigating the yield of ammonia at different temperatures.

The equilibrium system is given below.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \Delta H = -92 \text{ kJ/mol or kJ}$$

Three different trials were set up in a 1 litre reaction vessel.

Each trial had an initial mixture of 1.00 mol of N_2 and 3.00 mol of H_2 . The temperatures that were used for each mixture were 100 °C , 300 °C and 500 °C. After 30 seconds the scientist measured the concentration of NH_3 present at each trial.

1.	Using Le Chatelier's principle, explain how the mixture will respond at each temperature?	
		2 marks
2.	Identify one flaw in the experimental design that could impact on the validity of the scientist's conclusion on the relationship between temperature and yield.	
		1 mark
3.	Suggest a change in the procedure that would overcome the flaw stated in question and explain why this will lead to a conclusion with high validity.	2. abov
		2 marks
4.	Suggest one other variable that must be kept constant if the relationship between	
4.	temperature and yield is to be properly investigated. Explain why this is important.	
		2 marks

- 6. Consider the graph shown in figure 1. It shows the concentration of NH_3 over time as graphed by the scientist during trial 1 using a temperature of 300 °C.

b. Give an explanation for each graph.

a. Draw the graph you expect would be produced at 100 °c and at 500 °C. Clearly label each graph.
2 marks

